20. A Local--Global Principle for Symplectic $K_2$

  • Andrei Lavrenov Universitetsky prospekt, 28 Peterhof, St. Petersburg, Russia. avlavrenov@gmail.com
Keywords: Symplectic group, Steinberg group, Algebraic K-theory, Local--global principle

Abstract

We prove that an element of the relative symplectic Steinberg group $g\in{StSp}_{2n}(R[t],\,tR[t])$ is trivial if and only if its image under any maximal localisation homomorphism is trivial.

References

\bibitem{n1} E.~Abe, Whitehead groups of Chevalley groups over polynomial rings, {\it Comm. Algebra} {\bf 11} (1983) 1271--1307.
DOI 10.1080/00927878308822906;
zbl 0513.20030;
MR0697617

\bibitem{n2} A.~Bak, N.~Vavilov, Structure of hyperbolic unitary groups I: elementary subgroups, {\it Algebra Colloq.} {\bf7} (2) (2000) 159--196.
DOI 10.1007/s10011-000-0159-1;
zbl 0963.20024;
MR1810843

\bibitem{n3} W.~van der Kallen, Another presentation for Steinberg groups, {\it Indag. Math} {\bf 80} (1977) 304--312.
https://doi.org/10.1016/1385-7258(77)90026-9;
zbl 0375.20034;
MR0463263

\bibitem{n4} F.~Keune, The relativisation of $K_2$, {\it J. Algebra} {\bf54} (1) (1987) 159--177.
MR0511460

\bibitem{n5} V.~Kopeiko, Stabilization of symplectic groups over rings of polynomials (Russian), {\it Mat. Sb.} ({\it N. S.}) {\bf 106}, ({\bf148}) (1) (1978) 94--107.
https://doi.org/10.1070/SM1978v034n05ABEH001337;
zbl 0414.20037;
MR0497932

\bibitem{l1} A.~Lavrenov, Another presentation for symplectic Steinberg groups, {\it J. Pure Appl. Algebra} {\bf219} (9) (2015) 3755--3780.
DOI 10.1016/j.jpaa.2014.12.021;
zbl 1319.19001;
MR3335982;
arxiv 1405.4296

\bibitem{LS} A.~Lavrenov, S.~Sinchuk, On centrality of even orthogonal $K_2$, J.~Pure Appl.~Algebra 221\,(5)~pp.\,1134--1145.
https://doi.org/10.1016/j.jpaa.2016.09.004;
zbl 1360.19002;
MR3582720;
https://arxiv.org/abs/1606.00272

\bibitem{n7} J.-L. Loday, Cohomologie et groupes de Steinberg relatifs, {\it J. Algebra} {\bf54} (1) (1978) 178--202.
DOI 10.1016/0021-8693(78)90025-X;
zbl 0391.20040;
MR0511461

\bibitem{n8} S.~Sinchuk, On centrality of $K_2$ for Chevalley groups of type $E_l$, {\it J. Pure Appl. Algebra} {\bf220} no.~2 (2016) 857--875.
https://doi.org/10.1016/j.jpaa.2015.08.003;
zbl 1327.19004;
MR3399394;
https://arxiv.org/abs/1502.02463

\bibitem{n9} A.~Stavrova, Homotopy invariance of non-stable $K_1$-functors, {\it J.~K-theory} {\bf13} no.2 (2014) 199--248.
https://doi.org/10.1017/is013006012jkt232;
zbl 1314.19002;
MR3189425;
arxiv 1111.4664

\bibitem{n10} A. Stepanov, Structure of Chevalley groups over rings via universal localization, {\it J. Algebra} {\bf 450} (2016) 522--548.
DOI 10.1016/j.jalgebra.2015.11.031;
zbl 1337.20057;
MR3449702;
arxiv 1303.6082

\bibitem{n11} A. Suslin, On the structure of special linear group over polynomial rings, {\it Math. USSR Izv.} {\bf11} (1977) 221--238.
DOI 10.1070/IM1977v011n02ABEH001709;
zbl 0378.13002

\bibitem{n12} A. Suslin, V. Kopeiko, Quadratic modules and the orthogonal group over polynomial rings, {\it J. Soviet Math.} {\bf20} (1982) 2665--2691.
DOI 10.1007/BF01681481;
zbl 0497.20038

\bibitem{n13} D. Quillen, Projective modules over polynomial rings, {\it Invent. Math.} {\bf 36} (1976) 167--171.
DOI 10.1007/BF01390008;
zbl 0337.13011;
MR0427303

\bibitem{n14} M. Tulenbaev, The Steinberg group of a polynomial ring, {\it Math. USSR Sb.} {\bf45} (1) (1983) 131--144.
zbl 0491.18010;
MR0642494
Published
2018-06-19
Section
Unassigned Articles