4. Graded Frobenius Cluster Categories

  • Jan E. Grabowski Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom
  • Matthew Pressland Institut f\"ur Algebra und Zahlentheorie, Universit\"at Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany


Recently the first author studied multi-gradings for generalised cluster categories, these being 2-Calabi--Yau triangulated categories with a choice of cluster-tilting object.  The grading on the category corresponds to a grading on the cluster algebra without coefficients categorified by the cluster category and hence knowledge of one of these structures can help us study the other.

In this work, we extend the above to certain Frobenius categories that categorify cluster algebras with coefficients.  We interpret the grading K-theoretically and prove similar results to the triangulated case, in particular obtaining that degrees are additive on exact sequences.

We show that the categories of Buan, Iyama, Reiten and Scott, some of which were used by Gei\ss, Leclerc and Schr\"oer to categorify cells in partial flag varieties, and those of Jensen, King and Su, categorifying Grassmannians, are examples of graded Frobenius cluster categories.


\newblock Cluster categories for algebras of global dimension $2$ and quivers
with potential.
\newblock {\em Ann. Inst. Fourier (Grenoble)}, 59(6):2525--2590, 2009.
DOI 10.5802/aif.2499;
zbl 1239.16011;
MR 2640929;
arxiv 0805.1035.

F.~W. Anderson and K.~R. Fuller.
\newblock {\em Rings and categories of modules}.
\newblock Graduate Texts in Mathematics 13. Springer New York, 2nd edition,
zbl 0301.16001;
MR 0417223

M.~Barot, D.~Kussin, and H.~Lenzing.
\newblock The {G}rothendieck group of a cluster category.
\newblock {\em J. Pure Appl. Algebra}, 212(1):33--46, 2008.
DOI 10.1016/j.jpaa.2007.04.007;
zbl 1148.16005;
MR 2355032;
arxiv 0801.4540.

T.~Br{\"u}stle, G.~Dupont, and M.~P{\'e}rotin.
\newblock On maximal green sequences.
\newblock {\em Int. Math. Res. Not. IMRN}, 2014(16):4547--4586, 2014.
DOI 10.1093/imrn/rnt075;
zbl 1346.16009;
MR 3250044;
arxiv 1205.2050.

A.~B. Buan, O.~Iyama, I.~Reiten, and J.~Scott.
\newblock Cluster structures for $2$-{C}alabi--{Y}au categories and unipotent
\newblock {\em Compos. Math.}, 145(4):1035--1079, 2009.
DOI 10.1112/S0010437X09003960;
zbl 1181.18006;
MR 2521253;

R.-O. Buchweitz.
\newblock Maximal {C}ohen--{M}acaulay modules and {T}ate-cohomology over
{G}orenstein rings.
\newblock Unpublished manuscript, 1986.

\newblock Exact categories.
\newblock {\em Expo. Math.}, 28(1):1--69, 2010.
DOI 10.1016/j.exmath.2009.04.004;
zbl 1192.18007;
MR 2606234;

S.~Dominguez and C.~Geiss.
\newblock A {C}aldero--{C}hapoton formula for generalized cluster categories.
\newblock {\em J. Algebra}, 399:887--893, 2014.
DOI 10.1016/j.jalgebra.2013.10.018;
zbl 1316.13033;
MR 3144617;
arxiv 1209.2081

S.~Fomin and A.~Zelevinsky.
\newblock Cluster algebras. {I}. {F}oundations.
\newblock {\em J. Amer. Math. Soc.}, 15(2):497--529, 2002.
DOI 10.1090/S0894-0347-01-00385-X;
zbl 1021.16017;
MR 1887642;

C.~Fu and B.~Keller.
\newblock On cluster algebras with coefficients and 2-{C}alabi-{Y}au
\newblock {\em Trans. Amer. Math. Soc.}, 362(2):859--895, 2010.
DOI 10.1090/S0002-9947-09-04979-4;
zbl 1201.18007;
MR 2551509;
arxiv 0710.3152.

C.~Gei{\ss}, B.~Leclerc, and J.~Schr{\"o}er.
\newblock Partial flag varieties and preprojective algebras.
\newblock {\em Ann. Inst. Fourier (Grenoble)}, 58(3):825--876, 2008.
DOI 10.5802/aif.2371;
zbl 1151.16009;
MR 2427512;
arxiv math/0609138.

C.~Gei{\ss}, B.~Leclerc, and J.~Schr{\"o}er.
\newblock Kac--{M}oody groups and cluster algebras.
\newblock {\em Adv. Math.}, 228(1):329--433, 2011.
DOI 10.1016/j.aim.2011.05.011;
zbl 1232.17035;
MR 2822235;
arxiv 1001.3545.

C.~Gei{\ss}, B.~Leclerc, and J.~Schr{\"o}er.
\newblock Cluster structures on quantum coordinate rings.
\newblock {\em Selecta Math. (N.S.)}, 19(2):337--397, 2013.
DOI 10.1007/s00029-012-0099-x;
zbl 1318.13038;
MR 3090232;
arxiv 1104.0531.

M.~Gekhtman, M.~Shapiro, and A.~Vainshtein.
\newblock Cluster algebras and {P}oisson geometry.
\newblock {\em Mosc. Math. J.}, 3(3):899--934, 2003.
zbl 1057.53064;
MR 2078567;
arxiv math/0208033.

M.~Gekhtman, M.~Shapiro, and A.~Vainshtein.
\newblock {\em Cluster algebras and {P}oisson geometry}, volume 167 of {\em
Mathematical Surveys and Monographs}.
\newblock American Mathematical Society, Providence, RI, 2010. ISBN 978-0-8218-4972-9/hbk.
zbl 1217.13001;
MR 2683456

J.~E. Grabowski.
\newblock Graded cluster algebras.
\newblock {\em J. Algebraic Combin.}, 42(4):1111--1134, 2015.
DOI 10.1007/s10801-015-0619-9;
zbl 1333.13032;
MR 3417261;
arxiv 1309.6170.

\newblock {\em Triangulated categories in the representation theory of
finite-dimensional algebras}, volume 119 of {\em London Mathematical Society
Lecture Note Series}.
\newblock Cambridge University Press, Cambridge, 1988.
zbl 0635.16017;
MR 0935124

O.~Iyama and Y.~Yoshino.
\newblock Mutation in triangulated categories and rigid {C}ohen--{M}acaulay
\newblock {\em Invent. Math.}, 172(1):117--168, 2008.
DOI 10.1007/s00222-007-0096-4;
zbl 1140.18007;
MR 2385669;
arxiv math/0607736.

B.~T. Jensen, A.~D. King, and X.~Su.
\newblock A categorification of {G}rassmannian cluster algebras.
\newblock {\em Proc. Lond. Math. Soc. (3)}, 113(2):185--212, 2016.
DOI 10.1112/plms/pdw028;
zbl 1375.13033;
MR 3534971;
arxiv 1309.7301.

M.~Kalck, O.~Iyama, M.~Wemyss, and D.~Yang.
\newblock Frobenius categories, {G}orenstein algebras and rational surface
\newblock {\em Compos. Math.}, 151(3):502--534, 2015.
DOI 10.1112/S0010437X14007647;
zbl 1327.14172;
MR 3320570;
arxiv 1209.4215.

\newblock Chain complexes and stable categories.
\newblock {\em Manuscripta Math.}, 67(4):379--417, 1990.
DOI 10.1007/BF02568439;
zbl 0753.18005;
MR 1052551

\newblock Cluster algebras, quiver representations and triangulated categories.
\newblock In {\em Triangulated categories}, volume 375 of {\em London Math.
Soc. Lecture Note Ser.}, pages 76--160. Cambridge Univ. Press, Cambridge,
zbl 1215.16012;
MR 2681708;
arXiv 0807.1960.

\newblock On cluster theory and quantum dilogarithm identities.
\newblock In {\em Representations of algebras and related topics}, EMS Ser.
Congr. Rep., pages 85--116. Eur. Math. Soc., Z\"urich, 2011.
zbl 1307.13028;
MR 2931896;
arxiv 1102.4148.

B.~Keller and I.~Reiten.
\newblock Cluster-tilted algebras are {G}orenstein and stably {C}alabi--{Y}au.
\newblock {\em Adv. Math.}, 211(1):123--151, 2007.
DOI 10.1016/j.aim.2006.07.013;
zbl 1128.18007;
MR 2313531;
arxiv math/0512471.

\newblock {K}rull--{S}chmidt categories and projective covers.
\newblock {\em Expo. Math.}, 33(4):535--549, 2015.
DOI 10.1016/j.exmath.2015.10.001;
zbl 1353.18011;
MR 3431480;
arxiv 1410.2822.

\newblock On cluster algebras from once punctured closed surfaces.
\newblock Preprint, 2013.
arxiv 1310.4454.

R.~J. Marsh.
\newblock {\em Lecture notes on cluster algebras}.
\newblock Z\"{u}rich Lectures in Advanced Mathematics. European Mathematical
Society, 2014.

\newblock Cluster characters for 2-{C}alabi--{Y}au triangulated categories.
\newblock {\em Ann. Inst. Fourier (Grenoble)}, 58(6):2221--2248, 2008,

\newblock Grothendieck group and generalized mutation rule for
2-{C}alabi--{Y}au triangulated categories.
\newblock {\em J. Pure Appl. Algebra}, 213(7):1438--1449, 2009,

\newblock Internally {C}alabi--{Y}au algebras and cluster-tilting objects.
\newblock {\em Math. Z.}, 287(1--2):555--585, 2017.
DOI 10.1007/s00209-016-1837-0;
zbl 06796846;
MR 3694688;
arxiv 1510.06224.

D.~E.~V. Rose.
\newblock A note on the {G}rothendieck group of an additive category.
\newblock Preprint, 2011.
arxiv 1109.2040.
How to Cite
GRABOWSKI, Jan E.; PRESSLAND, Matthew. 4. Graded Frobenius Cluster Categories. DOCUMENTA MATHEMATICA, [S.l.], v. 23, p. 49-76, apr. 2018. ISSN 1431-0643. Available at: <https://ojs.elibm.org/index.php/dm/article/view/346>. Date accessed: 23 may 2018. doi: https://doi.org/10.25537/dm.2018v23.49-76.
Unassigned Articles