3. Wide Subcategories are Semistable

  • Toshiya Yurikusa Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
Keywords: Representation theory of finite dimensional algebras, wide subcategories, semistable subcategories, $\tau$-tilting theory


For an arbitrary finite dimensional algebra $\Lambda$, we prove that any wide subcategory of $\Mod \Lambda$ satisfying a certain finiteness condition is $\theta$-semistable for some stability condition $\theta$. More generally, we show that wide subcategories of $\Mod \Lambda$ associated with two-term presilting complexes of $\Lambda$ are semistable. This provides a complement for Ingalls-Thomas-type bijections for finite dimensional algebras.


\bibitem[AIR]{AIR} T. Adachi, O. Iyama and I. Reiten, $\tau$-{\it tilting theory}, Compos. Math. Vol. 150, 3 (2014) 415--452.
DOI 10.1112/S0010437X13007422;
zbl 1330.16004;
MR 3187626;
arxiv 1210.1036

\bibitem[Ai]{Ai} T. Aihara, {\it Tilting-connected symmetric algebras}, Algebr. Represent. Theor. Vol. 16 (2013) 873--894.
DOI 10.1007/s10468-012-9337-3;
zbl 1348.16010;
MR 3049676;
arxiv 1012.3265

\bibitem[AI]{AI} T. Aihara and O. Iyama, {\it Silting mutation in triangulated categories}, J. Lond. Math. Soc. Vol. 85 (2012) 633--668.
DOI 10.1112/jlms/jdr055;
zbl 1271.18011;
MR 2927802;
arxiv 1009.3370

\bibitem[As]{As} S. Asai, {\it Semibricks}
arxiv 1610.05860.

\bibitem[ASS]{ASS} I. Assem, D. Simson and A. Skowronski, {\it Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory}, Cambridge University Press, 2006.
zbl 1092.16001;
MR 2197389

\bibitem[Bri]{Bri} T. Bridgeland, {\it Stability conditions on triangulated categories}, Ann. Math. Vol. 166, 2 (2007) 317--345.
DOI 10.4007/annals.2007.166.317;
zbl 1137.18008;
MR 2373143;
arxiv math/0212237

\bibitem[BPP]{BPP} N. Broomhead, D. Pauksztello and D. Ploog, {\it Discrete derived categories II: the silting pairs CW complex and the stability manifold}, J. Lond. Math. Soc.(2) 93 (2016) 273--300.
DOI 10.1112/jlms/jdv069;
zbl 1376.16006;
MR 3483114;
arxiv 1407.5944

\bibitem[Bru]{Bru} K. Br\"{u}ning, {\it Thick subcategories of the derived category of hereditary algebra}, Homology Homotopy Appl. 9 (2) (2007) 165--176.
DOI 10.4310/HHA.2007.v9.n2.a7;
zbl 1142.18008;
MR 2366948

\bibitem[BST]{BST} T. Br\"{u}stle, D. Smith and H. Treffinger, {\it Stability conditions, }$\tau$-{\it tilting theory and maximal green sequences}
arxiv 1705.08227.

\bibitem[DIJ]{DIJ} L. Demonet, O. Iyama and G. Jasso, $\tau$-{\it tilting finite algebras,} {\it brick and} $g$-{\it vectors}
arxiv 1503.00285.

\bibitem[DIRRT]{DIRRT} L. Demonet, O. Iyama, N. Reading, I. Reiten and H. Thomas, {\it Lattice theory of torsion classes}, in preparation.

\bibitem[Hop]{Hop} M. Hopkins, {\it Global methods in homotopy theory}, Homotopy theory (Durham, 1985), 73--96, London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press, Cambridge, 1987.
DOI 10.1017/CBO9781107325746.005;
zbl 0657.55008;
MR 0932260

\bibitem[Hov]{Hov} M. Hovey, {\it Classifying subcategories of modules}, Trans. Amer. Math. Soc. 353 (8) (2001) 3181--3191.
DOI 10.1090/S0002-9947-01-02747-7;
zbl 0981.13006;
MR 1828603;
arXiv math/9912221

\bibitem[I]{I} K. Igusa, {\it Linearity of stability conditions I}, in preparation, 2017.
arxiv 1706.06986

\bibitem[IOTW]{IOTW} K. Igusa, K. Orr, G. Todorov and J. Weyman, {\it Cluster complexes via semi-invariants}, Compos. Math. Vol. 145, 4 (2009) 1001--1034.
DOI 10.1112/S0010437X09004151;
zbl 1180.14047;
arxiv 0708.0798

\bibitem[IT]{IT} C. Ingalls and H. Thomas, {\it Noncrossing partitions and representations of quivers}, Compos. Math. Vol. 145, 6 (2009) 1533--1562.
DOI 10.1112/S0010437X09004023;
zbl 1182.16012;
MR 2575093;
arxiv math/0612219

\bibitem[J]{J} G. Jasso, {\it Reduction of $\tau$-tilting modules and torsion pairs}, Int. Math. Res. Not. IMRN 16 (2015) 7190--7237.
DOI 10.1093/imrn/rnu163;
zbl 1357.16028;
MR 3428959;
arxiv 1302.2709

\bibitem[KV]{KV} B. Keller and D. Vossieck, {\it Aisles in derived categories}, Deuxieme Contact Franco-Belge en Algebre (Faulx-lesThombes, 1987). Bull. Soc. Math. Belg. 40 (1988) 239--253.
zbl 0671.18003;
MR 0976638

\bibitem[K]{K} A. King, {\it Moduli of representations of finite-dimensional algebras}, Q. J. Math. 45, 4 (1994) 515--530.
DOI 10.1093/qmath/45.4.515;
zbl 0837.16005;
MR 1315461

\bibitem[KS]{KS} H. Krause and J. Stovicek, {\it The telescope conjecture for hereditary rings via Ext-orthogonal pairs}, Adv. Math. 225 (2010) 2341--2364.
DOI 10.1016/j.aim.2010.04.027;
zbl 1242.16007;
MR 2680168

\bibitem[MS]{MS} F. Marks and J. Stovicek, {\it Torsion classes, wide subcategories and localisations},
DOI 10.1112/blms.12033;
zbl 06774562;
arxiv 1503.04639.

\bibitem[N]{N} A. Neeman, {\it The chromatic tower for $D(R)$}, Topology 31 (1992) 519--532.
DOI 10.1016/0040-9383(92)90047-L;
zbl 0793.18008;
MR 1174255

\bibitem[S]{S} S. O. Smal\o, {\it Torsion theory and tilting modules}, Bull. Lond. Math. Soc. 16 (1984) 518--522.
MR 0751824

\bibitem[ST]{ST} D. Speyer and H. Thomas, in preparation.

\bibitem[Ta]{Ta} R. Takahashi, {\it Classifying subcategories of modules over a commutative Noetherian ring}, J. Lond. Math. Soc. (2) 78 (2008) 767--782.
DOI 10.1112/jlms/jdn056;
zbl 1155.13008;
MR 2456904;
arxiv 0808.0058

\bibitem[Th]{Th} R. W. Thomason, {\it The classification of triangulated subcategories}, Comp. Math. 105, no. 1 (1997) 1--27.
DOI 10.1023/A:1017932514274;
zbl 0873.18003;
MR 1436741
Unassigned Articles